
APPLYING PACKAGE MANAGEMENT TO MOD INSTALLATION

A Thesis
by

STEPHEN BUNN

Submitted to the Graduate School
at Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

August 2017
Department of Computer Science

APPLYING PACKAGE MANAGEMENT TO MOD INSTALLATION

A Thesis
by

STEPHEN BUNN
August 2017

APPROVED BY:

R. Mitchell Parry, Ph.D.
Chairperson, Thesis Committee

James B. Fenwick Jr., Ph.D.
Member, Thesis Committee

Alice McRae, Ph.D.
Member, Thesis Committee

Rahman Tashakkori, Ph.D.
Member, Thesis Committee

Rahman Tashakkori, Ph.D.
Chairperson, Department of Computer Science

Max C. Poole, Ph.D.
Dean, Cratis D. Williams School of Graduate Studies

Copyright© Stephen Bunn 2017
All Rights Reserved

Abstract

APPLYING PACKAGE MANAGEMENT TO MOD INSTALLATION

Stephen Bunn
B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: R. Mitchell Parry, Ph.D.

Package management automates the discovery and installation of software that can co-

exist within an operating system. The methods used by package management can also

address other instances where the installation of software needs to be automated. One

example of this is the environment produced by third party video game modifications. An

adapted application of package management practices can help to solve the difficult prob-

lem of finding and installing a set of video game modifications that do not conflict with

each other. This greatly benefits the environment by allowing third party contributions

to be easily installed which fosters growth in both the developer and user community

surrounding the environment. This thesis presents the theory and complexities behind

package management and shows how it can be effectively applied to managing video game

modifications by presenting examples of software that can extract relevant metadata from

video game modifications and discover conflict free installation solutions.

iv

Acknowledgements

Thanks to Dr. Parry for his insight into what areas of this thesis should be expounded

upon and what areas should be cut down so as to tailor to someone new to the idea

of package management. Thanks also to my readers, Dr. Tashakkori, Dr. McRae,

and Dr. Fenwick for their willingness to read and provide feedback on the content of

this thesis. I would like to also like to thank all of the authors of the research papers,

technical reports, and documentation that helped me understand package management at

a greater depth (beneficial works listed in the bibliography). Thanks also to my parents

for their encouragement during the time it took to write this thesis.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 What is Package Management? 4
2.1 Software Components . 4
2.2 Levels of Component Management . 5
2.3 What is a Package? . 6
2.4 Relationships between Packages . 7
2.5 Debian Package Management . 7

2.5.1 Metadata . 8
2.5.2 Archive . 10
2.5.3 Virtual Packages . 14

2.6 Installers . 15
2.6.1 Meta Installers . 15
2.6.2 Physical Installers . 17

3 Package Theory 19
3.1 Definitions . 19

3.1.1 Repository . 19
3.1.2 Abundance . 21
3.1.3 Peace . 21
3.1.4 Health . 21
3.1.5 Installability . 22
3.1.6 Co-Installability . 22
3.1.7 Direct Dependency . 22
3.1.8 Dependency . 23
3.1.9 Conjunctive Direct Dependency 23

vi

3.1.10 Conjunctive Dependency . 23
3.1.11 Dependency Cone . 24
3.1.12 Reverse Dependency Cone . 24
3.1.13 Installability by Dependency Cone 24

3.2 Package Installability . 25

4 Video Game Modifications 28
4.1 Installing Mods . 28
4.2 Installability Analysis . 30

4.2.1 Mod Conflicts . 30
4.2.2 Mod Dependencies . 31

5 Applied Mod Management 34
5.1 Mod Structure . 34

5.1.1 TES (The Elder Scrolls) File Format 35
5.1.2 BSA (Bethesda Archive) File Format 39

5.2 Constructing Mod Dependency Cones . 42
5.3 Dependency Solving . 46

6 Results 51
6.1 Synthetic Examples . 51

6.1.1 Successful Solving . 52
6.1.2 Solving Failures . 55

6.2 Real World Application . 55
6.3 Related Issues . 58

6.3.1 Beneficial Metadata . 59
6.3.2 Comparable Versioning . 60
6.3.3 Automated Conflict Detection . 61

7 Conclusion and Future Work 62

Bibliography 67

Vita 68

vii

List of Figures

2.1 Package Dependency . 7
2.2 Package Conflict . 7
2.3 Debian Tar Dependency Tree . 11

3.1 Simple Repository Graph . 26

6.1 Trivial Dependency Mod Graph . 51
6.2 Simple Solvable Mod Dependency Graph 53
6.3 Simple Solvable Mod Dependency Graph with Conflicts 54
6.4 Simple Solvable Mod Dependency Graph with Conflicts 54
6.5 Simple Unsolvable Mod Dependency Graph 55
6.6 Default Distribution Dependency Graph 56
6.7 NPC Improvement Dependency Graph 57

viii

List of Tables

5.1 TES4 Record Structure . 35
5.2 TES4 Field Structure . 36
5.3 TES4 Group Structure . 37
5.4 BSA Header Structure . 40
5.5 BSA Folder Structure . 40
5.6 BSA File Structure . 41

6.1 Load Order Solutions for Figure 6.2 . 53
6.3 Load Order Solutions for Figure 6.4 . 54
6.5 Load Order Solutions for Figure 6.7 . 57

ix

Chapter 1 - Introduction

With the increasing demand for speedy software development, the luxury of not having to

reinvent the wheel by utilizing third party code has become a staple in all forms of modern

software development. In Windows and MacOS systems, the practice of utilizing someone

else’s code is disguised by bundling all the necessary resources into one setup or archive

file that the end user installs. However, in open source systems, mainly Linux, software

is typically delivered as either source code or compiled binaries files without including all

the necessary third-party resources required to make the software work. In order for the

software to function correctly, all of the code that was not bundled with the distributed

binaries or source code needs to be separately installed. This can be done manually

by searching for, downloading, and installing each required third-party resource. That

process can be incredibly inefficient and tiresome for every piece of software one might

require. Fortunately, the process of manually installing external resources is automated

with a practice termed package management.

This method of fitting many small pieces together to form functional software

has increased development speed and made the average developer’s and Linux user’s life

easier. Although it is wonderful that this methodology of software delivery has been

created, understanding how it works and where it might fit in other areas of development

is important for the future of software distribution. Video game modifications is an area

1

2

that can greatly benefit from the practices behind package management. Unfortunately,

most of the current methods of managing video game modifications do not utilize these

practices. By showing that package management can be applied to the distribution of

mods (packages for video games), this thesis aims to show how package management can

be leveraged effectively in other forms of software delivery. The following sections in this

thesis describes some of the generic practices and theories behind package management

which includes an application of package theory that currently does not exist.

Before continuing into the analysis of a basic architecture involved in package

management systems, it is beneficial to understand the projects and communities which

have helped in the past to further the quality and completeness of package management

systems.

The EDOS (Environment for the Distribution of Open Source software) Project

is a European research project with the goal to "improve the stability of a distribution

from the point of view of the distribution editor, and not the stability of a particular user

installation..." [1]. Much of the reserach done by the collaborators of the EDOS project

overviews the organization and issues behind automating the installation of software.

Over time the documentation surrounding the origins of the EDOS project has some-

what disappeared. However, the reports and research published by the EDOS team still

exists and provides valuable content regarding the challenges and complexity surrounding

package management.

3

The Mancoosi (Managing the Complexity of Open Source Software1) project is

another European research project that began on early in 2008, and lasted until 2011.

Consisting of 37 collaborators within 10 universities and companies, this European re-

search project’s tag-line is "managing software complexity" and the problem addressed is

the following [2]: "Free and Open Source Software distributions raise difficult problems

both for distribution editors and system administrators. Distributions evolve rapidly by

integrating new versions of software packages that are independently developed. System

upgrades may proceed on different paths depending on the current state of a system

and the available software packages, and system administrators are faced with choices

of upgrade paths and possibly with failing upgrades." This project is the successor of

the previously mentioned EDOS project and provides plenty of beneficial research for

optimizing the current state of popular package managers. Many of the researchers who

were part of the Mancoosi team have provided research and reports which are used as

the foundation in this thesis [3; 4; 5; 6]. Apart from the EDOS project described above,

this project intends to help developing tools for the system administrators who are most

likely to be interacting heavily with package managers on a day to day basis.

1http://www.dicosmo.org/space/PlaquetteMancoosi-rotated.pdf

http://www.dicosmo.org/space/PlaquetteMancoosi-rotated.pdf

Chapter 2 - What is Package Management?

Package management is the automated installation of software bundles onto a computer

system. Unfortunately, the process of performing this automated installation can be quite

complex, involving packages, their dependencies and conflicts. To understand package

management, we start with the idea of a software component.

2.1 Software Components

Components, in the context of software management, are typically viewed as small bun-

dles of software that address a specific need or have a specific purpose. For example, if a

developer develops programs in a language that does not have the native ability to predict

mimetypes for files, the developer could simply use the open sourced libmagic library

to handle that responsibility. In this example, the libmagic library is a component with

the sole responsibility of predicting file mimetypes. Because of this, developers do not

typically need to worry about writing mundane libraries for small tasks and instead can

focus on real product development.

This idea of components comes from a development methodology called compo-

nent based software engineering (CBSE). This development methodology isolates con-

cerns into separate components each with a specific purpose.

4

https://sourceforge.net/projects/libmagic/
https://sourceforge.net/projects/libmagic/

5

2.2 Levels of Component Management

Because of the complexity behind free and open source repositories and installers related

to Linux distributions, much research has been done regarding these systems. The work

done in [7] defines three categories of component types that are listed below in order from

least to most coarse:

1. Fine grained components : Command line tools such as cat and awk are used and

assembled in more complex components using pipes.

2. Plugins : Software components which are able to extend the functionality of a par-

ticular software. "Plugins are often known as modules or extensions" [7] deployed

in the context of an application. Examples include Chrome extensions, Firefox

add-ons, source modules for open sourced applications such as the Apache HTTP

Server, and Eclipse plugins.

3. Packages : An archive which provides either compiled or source code software to

some environment (typically the operating system).

According to [7] the more coarse grained a component is, the harder it is to handle.

Because of this, packages are typically the most difficult to deal with and therefore are

researched heavily.

6

Before covering some of the more complex features of package management, it is

important to define and understand what these packages are and how they relate to each

other.

2.3 What is a Package?

Packages are generally defined as an archive file containing a computer program as well

as any necessary metadata for its deployment. "This program may either take the form

of source code which needs to be automatically compiled or precompiled binaries" [8].

In either case the package provides some set of new features to its level of management.

This thesis will use the term package assuming packages are built for free and open source

software (FOSS) Debian (DEB) distributions. In order to specify the libraries or other

packages that are required for the package to function correctly, package authors use

metadata to define dependencies on other packages. The definition of dependencies can

contain conjunctive and/or disjunctive dependencies. These are typically defined as a

list of tuples where disjunctive dependencies are represented as a tuple with two or more

packages and a conjunctive dependency is represented with a tuple containing a single

package. However, sometimes a package may also be written in a way which breaks the

functionality of another. In this case, the package in question lists conflicts with other

packages. With these two relationships, depends (dependencies) and conflicts (conflicts),

a graph can be formed.

7

2.4 Relationships between Packages

The graph previously mentioned is often termed a repository. This graph is fairly simple

using packages as nodes and depends and conflicts relationships as edges between the

nodes. Take the following simple repositories as an example:

A

B

Figure 2.1: Package Dependency

A

B C

Figure 2.2: Package Conflict

As shown in Figure 2.1, a package A depends on another package B. What this means

is that in the repository represented by Figure 2.1, package A must have package B in

order to function correctly. In Figure 2.2, however, package A depends on package B but

also conflicts with package C. This means that package A must have package B but not

package C in order to function correctly.

2.5 Debian Package Management

Previously packages were defined as archives containing either source code or compiled

binaries along with descriptive metadata. This section describes the structure and orga-

nization of a real world package management system to provide a concrete example of

8

large scale package distributions. Other distributions such as RedHat Package Manager

(RPM) also employ package management, we focus on Debian for simplicity.

2.5.1 Metadata

Debian packages are managed by the dpkg package manager and store most of their

metadata in a simple text file cal‘led the control file. An example of the popular tar

package is shown below:

Listing 2.1: Debian Tar Control File

Package: tar
Version: 1.28 -2.1 ubuntu0 .1
Architecture: amd64
Essential: yes
Maintainer: Ubuntu Developers <ubuntu -devel -discuss@lists.ubuntu.com >
Installed -Size: 804
Pre -Depends: libacl1 (>= 2.2.51 -8) , libc6 (>= 2.17), libselinux1 (>= 1.32)
Suggests: bzip2 , ncompress , xz-utils , tar -scripts
Conflicts: cpio (<= 2.4.2 -38)
Breaks: dpkg -dev (<< 1.14.26)
Replaces: cpio (<< 2.4.2 -39)
Section: utils
Priority: required
Multi -Arch: foreign
Description: GNU version of the tar archiving utility
Tar is a program for packaging a set of files as a single archive in tar
format. The function it performs is conceptually similar to cpio , and to
things like PKZIP in the DOS world. It is heavily used by the Debian package
management system , and is useful for performing system backups and exchanging
sets of files with others.

Original -Maintainer: Bdale Garbee <bdale@gag.com >

This file contains a sequence of predefined keys and custom values. A subset of the most

useful keys within the context of this thesis is listed below:

• Package: The name of the package.

• Version: The package’s version number.

9

• Depends : If the package depends on any other packages in order to run, a list of

package names with specific versions, if necessary, in parentheses. Packages listed

here can be installed in any order before or after installation of the parent package

(the package the metadata is for).

• Pre-depends : Similar to depends but all packages listed under the pre-depends key

must be fully installed onto the system before installation of the parent package

can be installed.

• Recommends : Similar to depends but the listed packages are not necessary for the

parent package to function.

• Suggests : Similar to depends but the parent package can function without any of

the listed packages.

• Enhances : The opposite of suggests. Saying “package A enhances package B” is

like saying “package B suggests package A.”

• Conflicts : The opposite of depends. A package cannot be installed if one of the

listed conflicts is present on the system.

• Replaces : Specifies priority for conflicted packages. If the parent package P conflicts

with some package p, and P replaces p, then p will be removed so as to install P .

10

• Breaks : Specifies packages which need to be deconfigured before the package being

installed can be unpacked.

• Provides : Used to specify what virtual package the parent package falls under

(discussed in section 2.5.3).

These packages and their defined relationships can be translated to a partial dependency

tree shown in Figure 2.3 which is generated by the debtree1 dependency visualization

tool and graphviz2 for graph visualization.

This is just a simple example of a packages dependency tree as the tar package

has only three defined dependencies in the Debian distribution. For packages with many

more defined dependencies, such as the Firefox web browser, the dependency tree is very

extensive.

2.5.2 Archive

Debian packages are distributed as ar archives which contain both the metadata and the

software the package provides. The software provided can be either source files which

need to be compiled or binaries which just need to be moved to a specific location.

This section provides a brief overview of these archives so as to present a more in depth

understanding of how packages are physically installed to a system.
1https://collab-maint.alioth.debian.org/debtree/
2http://www.graphviz.org

https://collab-maint.alioth.debian.org/debtree/
http://www.graphviz.org

11

F
ig
ur
e
2.
3:

D
eb

ia
n
T
ar

D
ep

en
de

nc
y
T
re
e

In
th
e
gr
ap

h
sh
ow

n
in

th
e
fo
llo

w
in
g
fig

ur
e,

th
es
e
ed
ge

co
nv

en
ti
on

s
ex
is
t:

•
P
re
-D

ep
en
ds
:
pu

rp
le
,b

ol
d

•
D
ep

en
ds
:
bl
ue

•
C
on

fli
ct
s:

re
d

12

Debian packages typically are stored as ar archives; this means they can be ex-

tracted and their contents can be viewed. Using the ar vx <DEB Package> command

will extract the contents of the archive to the current directory. Debian packages follow

a specific folder structure as shown below:

debian-binary
control.tar.gz

conffiles
prerm
postrm
control
postinst
md5sums

data.tar.xz

Notice the control file which was mentioned in section 2.5.1 and shown in Figure

2.3. The nested control archive is where the installer will go to learn how to install the

binaries or source available in the data archive. The other file, debian-binary, contains

the minimum version of Debian required.

Within the control archive several scripts exist. The postinst, prerm, and postrm

files contain scripts which are performed post-installation, pre-removal, and post-removal

respectively. These scripts are optional and usually used for purging temporary or meta

information that has been generated by the package but will no longer be needed after

removal. The conffiles file is a file which is used by the package manager to help the

user maintain their configuration of a package after an upgrade. When packages are

upgraded, they can potentially remove user configuration through the prerm or postrm

13

scripts. The conffiles file is meant to ensure user configuration persists. Finally,

md5sums contains the checksums of files stored within the data archive for validation and

build checking before installation.

The data archive varies from package to package but consists of binaries which

are to be installed onto the system. These binaries are nested within sub-directories

that indicate where on the system these binaries should be placed. An example of an

extracted tar data archive can be seen below:

14

bin
tar

etc
rmt

usr
lib

mime
packages

tar
tar

sbin
rmt-tar
tarcat

share
doc

tar
AUTHORS
changelog.Debian.gz
copyright
NEWS.Debian.gz
NEWS.gz
README.Debian
THANKS.gz

man
man1

tar.1.gz
tarcat.1.gz

man8
rmt-tar.8.gz

2.5.3 Virtual Packages

Virtual packages exist in every modern form of package management and are very useful

for describing the basic function of a package. Typically represented by the Provides

metadata tag, the value is an identifier recognized by the system as a sort of application

15

group. A simple example is that the firefox package provides the web-browser iden-

tifier. Many other packages can also provide this identifier such as the package for the

Chrome browser.

This identifier becomes useful when packages require a web browser, so they list

web-browser as a requirement in their respective dependency lists. This feature allows

for either the installation of the Firefox or the Chrome browser to satisfy this depen-

dency. This requirement is "considered as a disjunctive requirement whose elements are

all packages that provide web-browser" [4].

2.6 Installers

The program that uses the metadata to determine and install packages required for a

specified package to work is called the installer. The installer is actually split into two

different steps called the meta-installer and the physical-installer. The purpose and inner

workings of these installers is documented in the following subsections.

2.6.1 Meta Installers

In order to correctly install a package onto a system, the package manager must discern

which dependencies to install given the listed conflicts and the already present packages on

the system. This process is termed dependency solving [9] and is discussed in depth as the

most important process of package management. Ultimately, the meta-installer actually

16

handles the resolution of dependencies for a given package [6]. Much of the research

in package management focuses on the implementation of meta-installers, particularly

the algorithms behind dependency solving and the issues they face [6]. The following

subsections provide an overview of the research that addresses solutions to dependencies.

Since more research has been done regarding Debian meta-installers, this section will

consider only the following meta-installers built for Debian distributions:

• apt: The Advanced Packaging Tool originally built as a front end to Debian’s dpkg

package utility for .deb packages. Although built for Debian, it has been adapted

to RPM packages under the apt-rpm package.

• aptitude: An Ncurses based front-end to the apt utility for Debian packages.

• smart: A full-fledged meta-installer built in Python with included heuristics to

help with solving complex dependency solving.

• apt-pbo: A meta-installation tool proposed by [9] aimed to improve dependency

solving using pseudo-boolean optimization (PBO). Adds the idea of installation

policies such as freshness, removal, and number.

2.6.1.1 Dependency Solving

A responsibility of the meta-installer is to discover possible solutions to an upgrade

problem. This process is known as dependency solving, and it occurs in every form of

17

package management. As shown in chapter 3.2 and proven in [7], dependency solving

is NP-complete. As discussed in [9], "Finding a solution becomes rapidly more difficult

as the number of available packages grows and the number of versions of each package

increases." This presents many issues as many distribution’s repositories are quite large

and provide many versions to multiple packages. Typically solvers used by these package

managers are prebuilt SAT solvers which do the job quickly and provide a valid response.

The solver does this by encoding a package’s dependency tree as a conjunctive normal

form (CNF) satisfiability problem using several simple steps shown in section 5.3.

Although many dependency solvers are based off of SAT, "it should be noted

that SAT is a decision problem and any solution to the problem is equally valid" [9]. In

order to combat the issue where some solutions are better than others, "an optimization

problem and a extension of the SAT formulation called pseudo-Boolean optimization

(PBO) should be used instead" [9]. However, effective use of PBO is not standard and

is slower than the use of an SAT solver, therefore the rest of this thesis will focus mainly

on use of SAT solvers rather than PBO solvers.

2.6.2 Physical Installers

The physical-installer is rather simple in comparison to the meta-installer. This installer

simply takes the downloaded packages as reported by the meta-installer, extracts, and

then builds and/or places them on the system for use by the user. "Downloading packages

18

and resolving dependencies between packages are in general beyond the scope of the

installer" [10]. Typically these installers are specific to the type of system they are

installing the package on. For example, Debian utilizes the dpkg installer for installing

packages onto a Debian based system.

Chapter 3 - Package Theory

In order to understand how to determine whether a package can be installed on an existing

system, it is necessary to formally define installability and the relationships surrounding

packages. This following sections provide details on how this task is completed by using

the generic definitions compiled by Jaap Boender using the formalization of package

theory [3; 11; 4]. Some of these definitions are described and adapted below in order to

accurately describe package installability.

3.1 Definitions

Definition 3.1.1 (Repository) A repository R = (P,D,C) is a triple consisting of

a set of packages P , a conflict relation C, (C ⊆ P × P), and a dependency function

D : P −→⊆P(P), where P(·) is the power set operation [3].

This simply states that a repository has a set of packages where conflicts and dependen-

cies may exist. Given this definition, it is beneficial to also take into consideration the

following example of a repository [3]:

19

20

P = {alpha, bravo, charlie, delta, epsilon, foxtrot}
D(alpha) = {{bravo}, {charlie, delta}}
D(bravo) = {}
D(charlie) = {}
D(delta) = {}

D(epsilon) = {{delta, foxtrot}}
D(foxtrot) = {}

C = {(delta, foxtrot), (foxtrot, delta)}

As shown above, a package p cannot depend or conflict with itself. It is also interesting

to note that if the conflict (c1, c2) exists, then the conflict (c2, c1) also exists. These prop-

erties are formally described in two axioms used in common FOSS package management

relating to packages:

Axiom 1 (Package Self Dependency) For any package p ∈ P , there wouldn’t be a

d ∈ D(p) such that p ∈ d (remember that d is actually a set) [3].

Axiom 2 (Package Self Confliction) The conflict relation follows ∀(p1,p2)∈C p1 6= p2

and ∀(p1,p2)∈C (p2, p1) ∈ C (symmetric and irreflexive) [3].

These two axioms ensure that a package cannot depend on or conflict with itself.

"For a package p to be installable with respect to a given repository (P,D,C), it

must be possible to find a set I of packages in the repository (the installation; I ⊆ P)

that contains the package and fulfills two conditions; all the dependencies in I must be

21

satisfied and no two packages in I are in conflict" [3] with each other. This definition of

installability can be decomposed into two properties: abundance and peace.

Definition 3.1.2 (Abundance) A set of packages I is abundant (with respect to a

repository (P,D,C)) if and only if ∀p∈I [∀d∈D(p)[I ∩ d 6= ∅]] [3].

This means that an installation set satisfies all the dependencies of all its packages.

Definition 3.1.3 (Peace) A set of packages I is peaceful (with respect to a repository

(P,D,C)) if and only if ∀(c1,c2)∈C [¬(c1 ∈ I ∧ c2 ∈ I)] [3].

This definition simply states that a set of packages is peaceful with respect to a repository

if there are no conflicts between two packages in that set. Boender continues to show

that the combination of these two terms leads to another property referred to as health.

Definition 3.1.4 (Health) A set of packages is healthy with respect to a repository R

if it is abundant and peaceful with respect to R [3].

With the previous definitions, it is possible to formally define the actual problem behind

package management which is the installability of a package.

Definition 3.1.5 (Installability) A package p is installable in a repository R = (P,D,C)

if and only if there exists a healthy set I ⊆ P such that p ∈ I [3].

22

There can be multiple installation sets for a package p, which are called the installation

sets of p. A simple extension to the idea of installability is that if two or more packages

are installable at the same time for a specific repository, they are co-installable.

Definition 3.1.6 (Co-Installability) A set of packages S is co-installable in a repos-

itory R = (P,D,C) if and only if there exists a healthy set I ⊆ P such that S ⊆ I [3].

Now that package installability has been formally defined, formal definitions for the

relationships between packages must be also be defined. It is important to differentiate

between direct vs. indirect dependencies and disjunctive vs. conjunctive dependencies.

Definition 3.1.7 (Direct Dependency) A package p depends on another package q,

(p −→
1

q) if and only if there is a d ∈ D(p) such that q ∈ d [3].

This means that a package p depends directly on any package that it specifically lists in

one of its dependencies, d. Because multiple packages can satisfy the same dependency

such as {charlie, delta} above, not every package dependency is required. With this

dependency relation, it is now possible to form a graph (V,E) for a repository (P,D,C)

where V = P and E = {(p, q)
∣∣p→ q} [3].

Definition 3.1.8 (Dependency) A package p depends on another package q, (p→ q)

if and only if there is a list of packages p1, p2, · · · , pn such that p → p1 → p2 → · · · →

pn → q [3].

23

The general term dependency refers to a package q which may be required by a package

p to function although package q may not be a direct dependency of package p. Again,

not all of these packages are required because multiple packages can satisfy the same

dependency.

This can be visualized as a package that is accessible from any path starting from

a package p.

Definition 3.1.9 (Conjunctive Direct Dependency) A package p has a conjunctive

direct dependency on a package q, (p c−→
1

q) if and only if there is a d ∈ D(p) such that

d = {q} [3].

A conjunctive direct dependency is one where a package p depends on package q and

cannot be installed without it. A conjunctive dependency simply extends this idea to a

sequence of conjunctive direct dependencies:

Definition 3.1.10 (Conjunctive Dependency) A package p is a conjunctive depen-

dency on package q, (p c−→ q) if and only if there is a list of packages p1, p2, · · · , pn such

that p c−→ p1
c−→ p2

c−→ · · · c−→ pn
c−→ q [3].

From this definition of conjunctive dependencies, it is easy to see that for two packages

p and q such that p c−→ q, any installation set of p must include q [3].

Now we consider the set of all packages that a given package depends upon. A

dependency cone is defined as follows:

24

Definition 3.1.11 (Dependency Cone) The dependency cone ∆R(p) of a package p

with respect to a repository R = (P,D,C) is the set of packages {q ∈ P
∣∣ p → q}.

Similarly, the dependency cone ∆R(S) of a set of packages S is the union
⋃

p∈S ∆R(p) [3].

This simply means that the dependency cone of a package p with respect to a repository

R is the set of packages that p depends on. Related to the dependency cone is the reverse

dependency cone. This cone is the set of packages which depend on a package p.

Definition 3.1.12 (Reverse Dependency Cone) The reverse dependency cone∇R(p)

of a package p with respect to a repository R = (P,D,C) is the set of packages {q ∈

P
∣∣ q → p}. Similarly, the reverse dependency cone ∇R(S) of a set of packages S is the

union
⋃

p∈S∇R(p) [3].

If a package p is needed for a package q to function, then q is in the reverse dependency

cone of p, (∇R(p)). The definition of dependency cones simplifies the task of determining

if a package is installable because it reduces the number of packages to consider:

Definition 3.1.13 (Installability by Dependency Cone) A package p is installable

with respect to a repository R = (P,D,C) if and only if it is installable with respect to

the repository (∆R(p), D,C) [3].

There are many more useful definitions in Boender’s paper [3]; however, they are not

related to the research of this thesis.

25

3.2 Package Installability

The meta-installer (discussed in section 2.6.1) must determine whether or not a package

is installable (definition 3.1.5) given a repository. However, it has been proven that

determining whether a package is installable is NP-complete due to the fact that "package

installation is in NP" and "any 3SAT problem can be reduced in polynomial time to an

instance of the package installation problem" [7]. Fortunately, practical problems are

still tractable [3] and can be solved as an instance of the Boolean satisfiability problem.

The Boolean satisfiability (SAT) problem’s purpose is to find the possible config-

urations of Boolean variables that makes a given Boolean expression true. For example,

the Boolean expression (¬A ∧ B) is solvable when A = False and B = True. One of the

most popular ways of representing a Boolean expression is by using conjunctive normal

form (CNF). This form is a conjunction of clauses with disjunctive literals. For example,

the Boolean expression (A ∨ ¬B ∨ ¬C) ∧ (A ∨ B ∨ ¬C) is an instance of CNF because

each literal (A, B, C) are disjunctive within each clause, and each clause is conjunctive

within the expression.

Determining whether package p is installable within a repository R = (P,D,C)

(dependency solving) can be done by encoding the problem as a CNF expression. The

expression can be built using the following steps [9]:

26

1. Add the clause (p)

2. Add the clauses

{(
¬q ∨

(∨
d∈D(q)

{i ∈ d}

)) ∣∣∣∣∣ p = q ∨ p→ q

}
3. Add the clauses {(¬c1 ∨ ¬c2) | (c1, c2) ∈ C, (p = c1 ∨ p→ c1) ∧ (p = c2 ∨ p→ c2)}

4. These clauses are combined using AND

Using these steps, one can encode the potential installation of a package p into a Boolean

expression. Take for example the following repository graph:

alpha
bravo

charlie

delta

epsilon

foxtrot

golf

Figure 3.1: Simple Repository Graph

The installation of alpha for the graph shown above can be encoded as the following

Boolean expression:

(alpha) ∧ (¬alpha ∨ bravo) ∧ (¬alpha ∨ charlie ∨ delta) ∧ (¬bravo ∨ golf)

The clauses which result from conflicts can be seen in the encoding of the installation of

epsilon:

(epsilon) ∧ (¬epsilon ∨ delta ∨ foxtrot) ∧ (¬delta ∨ ¬foxtrot)

27

This encoding can ultimately be used by an SAT solver to discover possible installation

solutions. The complexity of solving the CNF expression is dependent on the number of

literals within the expression which need to be considered. In the instance shown above,

the number of unique literals is the number of packages within ∆R(p) of a package p.

Because a package must either be true (installed) or false (uninstalled) within a solution,

2|∆R(p)| different configurations of packages could be exhaustively evaluated.

The number of packages which need to be considered when determining installa-

bility can be further reduced by removing superfluous dependencies in the dependency

cone of p. This can be done by removing all dependencies for q ∈ ∆R(p) for d ∈ D(q)

where ∃d′∈D(q)[d ⊂ d′] is true [3]. Doing this removes unnecessary dependencies from a

healthy set of packages and decreases the number of literals that need to be considered

when determining package installability. By reducing the number of package relationships

which need to be considered by a solver, installability problems remain to be tractable [3].

Chapter 4 - Video Game Modifications

A video game modification, typically shortened to mod, is an extension which changes the

execution of the game in some way. Mods typically add assets or logic to the game. For

example, assets might include textures, 3D models, or sounds. Logic determines how the

game uses the assets. For the purpose of this thesis, we will use the following definition

for mod:

The following sections describe the practical complexity of installing mods for games

published by Bethesda1, and how mod installability relates to package theory.

4.1 Installing Mods

For Bethesda games, mod installation occurs dynamically at runtime in a particular

load order 2. For example, one of Bethesda’s more popular games, Skyrim, has standard

game resources which are loaded when the game starts. If the game is executed with

these resources, the game understands when, where, and how to render them. However,

Bethesda has released additional downloadable content (DLC) which needs its own re-

sources (apart from the standard ones). In order to do this, the DLC contains new files

that can be placed within the game’s directory structure so they can be accessed by the

game. However, the game needs to know what resources exist.
1https://bethesda.net
2https://bethesda.net/community/topic/5795/how-to-load-order

28

https://bethesda.net
https://bethesda.net/community/topic/5795/how-to-load-order

29

To understand how the game discovers the additional resources, it is necessary to

know that a Bethesda based game has two main types of resources:

• Asset : textures, 3D models, sounds, etc.

• Logic: modifies how the game functions

Assets typically remain on the file system while new logic is loaded at runtime.

In earlier versions of Bethesda games, the load order was determined by the times-

tamps of the logic resources being added. However, more recent versions of Bethesda

games utilize a text file called plugins.txt to indicate what plugins (up to 255) should

be loaded and in what order. Once loaded by the game, the logic refers to the assets

within the game directory.

Within the scope of DLC that is officially published by Bethesda, there are no

instances where adding the DLC overwrites or breaks the execution of the game. However,

when user-written DLC (i.e., mods) are loaded into the game, logic or assets may conflict

with previously loaded mods. These conflicts require an analysis to determine whether

a mod is installable. Mod installability is discussed in the following sections along with

a more in-depth analysis of mod conflicts and dependency relationships.

30

4.2 Installability Analysis

As mentioned earlier, package installability is NP-complete. Mod Installability is an

instance of package installability which has its own conflicts and dependencies.

4.2.1 Mod Conflicts

As opposed to package management, mod management does not have very many instances

of conflicts which break execution of the game. Instead, a mod has conflicts which hinder

user experience. This is due to the previously mentioned load order which only affects

logic additions to the game. Any mod that has some assets already defined may be

intentionally or unintentionally overwritten by the loading of a mod later in the load

order. In most cases, only noncritical assets are overwritten and thus do not cause the

game to crash. However, it may cause instances where missing or broken assets are loaded

into the game thus breaking the player’s immersion. This is not the only form of conflict

possible within Bethesda-based mods. Specifically, we define three categories of conflicts

that a mod may have with another mod. These conflict categories are listed below in

order from the most to the least common:

1. Asset File Conflicts : These are the most common form of conflicts and occur

in mods that write assets into the games directory structure. These files could

31

overwrite already existing asset files. File conflicts are detected by checking the

path for each added file against previously existing file paths.

2. Asset Reference Conflicts : Within the game, assets are reference by links and mod

logic additions can change these links. This can create a conflict when a previously

loaded mod requires a specific asset reference and a mod loaded later changes the

reference. Asset conflicts are detected by checking the references for each added

file against previously existing references.

3. Logic Behavior Conflicts : In addition to specifying the asset references, logic also

defines the behaviors of objects within the game. When a logic addition contradicts

the logic of a previously loaded mod, this causes a conflict. For example, a previous

mod may determine that a player has died, a new mod could bring that player back

to life. Detecting logic behavior conflicts is outside the scope of this thesis and a

good topic for future work.

4.2.2 Mod Dependencies

With respect to mod load ordering, there are situations where a mod p that requires a

mod q to be loaded by the game before mod p can be loaded properly defines a dependency

p → q. In Bethesda-based mods, a logic asset contains some references to other logic

assets that must be loaded by the game first. This relationship is similar to a direct

dependency in package theory. For example, the popular mod Frostfall references the

32

following logic assets:

D(Frostfall.esp) = {{Skyrim.esm}, {Update.esm}, {Campfire.esm}}

These dependencies are commonly calledmasters in Bethesda mods. If a mod Frostfall −→
1

Campfire then Campfire is a master of Frostfall. From the dependency function shown

above, one can clearly see that the file Frostfall.esp has three explicitly declared de-

pendencies. These are the standard game Skyrim.esm, the published unofficial update

to the standard game Update.esm, and another mod Campfire.esm. Because some of

these declared dependencies also have their own dependencies, a dependency tree can be

built from these relationships. One can further develop the dependency tree by including

the declared dependencies of Campfire.esm as shown below:

D(Campfire.esm) = {{Skyrim.esm}, {Update.esm}}

As shown above, Campfire.esm only depends on two standard assets already in the de-

pendency tree. Therefore, this dependency tree is complete as both Update.esm depends

on Skyrim.esm and Skyrim.esm depends on nothing. Dependencies such as Skyrim.esm

in Bethesda-based mod management are analogous to dependencies such as glibc shown

in Figure 2.3.

33

There are dependencies that do not need to overwrite previous logic and therefore

do not have dependencies. One example is the popular SKSE (Skyrim Script Extender)

extension that takes the form of a dynamic-link library rather than the previously dis-

cussed formats. This extension mainly adds many new functions and frameworks for mod

developers to utilize during development. For many mods, SKSE is a required dependency,

where the mod will not function unless SKSE is dynamically loaded by the game as well.

This thesis assumes that all required dynamic-link libraries are loaded at runtime. With

this knowledge, one can define two different types of dependencies that currently exist in

Bethesda-based mod management.

• Explicitly Defined Dependencies : Dependencies which are typically explicitly de-

fined as masters within the header of a TES file. Explicitly defined dependencies

are detected as described above.

• Implicitly Defined Dependencies : Dependencies which are not explicitly defined as

masters or dependencies but are nonetheless needed for proper execution of the

mod. Dynamic-link libraries are a good example of implicit dependencies. These

dependencies are detected by manually reading mod author documentation.

Because dependencies in Bethesda based mods initially appear to be conflicts, if a conflict

between a mod and its master is detected, it can be safely assumed that the master’s

resources being overwritten is expected.

Chapter 5 - Applied Mod Management

Now that the loading, dependencies, and conflicts of Bethesda based mods have been

described, the following sections provide details on how to extract this information from

the mods themselves and how to to find installable solutions. Valid installation solu-

tions are considered to be any solution where obvious conflicts do not cause the player’s

immersion to break.

5.1 Mod Structure

The following sections describe the basic structure that Bethesda based mods employ.

This structure was reverse engineered as part of this thesis with help from the community

posts at the Unofficial Elder Scrolls Pages1.

Bethesda’s game engine is specifically built to read logic from esm and esp files

using the TES (The Elder Scrolls) file format. There are several versions of TES file

formats. The most popular is the TES4 (TES version 4) file format although a newer

version (TES5) also exists. This thesis focuses on TES4 files because far more exist.

Assets are loaded as either a simple folder hierarchy (typically termed loose files) or

more recently as an archived BSA (Bethesda Archive) or BA2 (Bethesda Archive 2)

file. This thesis reverse engineers the BSA files because the vast majority of TES4 files
1http://en.uesp.net

34

http://en.uesp.net

35

reference only them. The following subsections detail the general structure of the TES

files and the BSA archive reverse engineered for this thesis.

5.1.1 TES (The Elder Scrolls) File Format

TES files are those previously termed ESM and ESP. Both of these file types follow the

same format except for some minor differences.

A TES4 file contains three different data model types, groups, records, and fields.

A given TES4 file begins with a header which takes the form of a record using the

following structure:

Table 5.1: TES4 Record Structure

TES4 Record
Name Type Description

name ubyte[4] The record’s name supported by the engine
size ulong Size of the content following the heading
flags ulong Bit flags for 10 unique meanings
form id ulong Engine reference for the record
vc info ubyte[4] Various information for version control
version ulong Record format version number
content byte[size] Field storage for the record

A record defines a piece of logic to be utilized by the game. The record defines what kind

of logic is being added to the game through a combination of the record’s name and the

fields stored in the record’s content. These fields use the following structure:

36

Table 5.2: TES4 Field Structure

TES4 Field
Name Type Description

name ubyte[4] Name of the field from the supported field names
size ushort Size of the data of the field
data byte[size] Data the field provides

These fields have a set of names that can be used, which depending on its name and its

parent record, has a specific meaning and expected data type.

For example for a TES4 file, the name of the header record will be TES4 and have

a form id of 0. For example, the below output is an example of a header record and its

nested fields for the popular mod Frostfall:

<TES4Record (TES4) "0x0">
<TES4Field ('HEDR') '0x9a99d93f170500007c4a5c74'>
<TES4Field ('CNAM') 'Chesko'>
<TES4Field ('SNAM') 'Adds hypothermia and cold weather survival mechanics.'>
<TES4Field ('MAST') 'Skyrim.esm'>
<TES4Field ('DATA') '0x0000000000000000'>
<TES4Field ('MAST') 'Update.esm'>
<TES4Field ('DATA') '0x0000000000000000'>
<TES4Field ('MAST') 'Campfire.esm'>
<TES4Field ('DATA') '0x0000000000000000'>
<TES4Field ('INTV') '0x01000000'>

Listing 5.1: Sample TES4 Header Record

As shown above, the header record has the name TES4 and a form id of 0x0 (0). This

record has 10 fields, the notable ones being HEDR, CNAM, SNAM, and MAST. The HEDR field

is a unique field that identifies a specific record as the TES header. CNAM and SNAM fields

simply denote the TES file author and the TES file description, respectively. The other

37

interesting field is the MAST field, a field that explicitly defines masters (dependencies).

DATA fields are typically used as a delimiter between MAST fields.

Following the header record will be a list of groups using the following structure:

Table 5.3: TES4 Group Structure

TES4 Group
Name Type Description

name ubyte[4] Always GRUP
size ulong Total size of the group
label ubyte[4] Record types within this group
group long Indicates group type from 10 unique groups types
timestamp ulong Timestamp of the group edit, MSDOS format
version ulong Group format version number
content byte[size-0x18] Record storage for the group

These groups are identified by their names and contain records using the same name. For

example, the following output is an example of a group and two of that group’s records.

<TES4Group (TOP) 'LSCR'>
<TES4Record (LSCR) "0x303df3e">

<TES4Field ('EDID') '_Frost_LoadingScreen12'>
<TES4Field ('DESC') 'Being wet causes you to gain exposure much more rapidly.'>
<TES4Field ('NNAM') '0x3cdf0303'>
<TES4Field ('SNAM') '0x6666663f'>
<TES4Field ('RNAM') '0xf6ff0000ddff'>
<TES4Field ('ONAM') '0xd3ff2d'>
<TES4Field ('XNAM') '0x00000634200000000000086332'>
<TES4Field ('MOD2') 'Cameras\\LSCameraPanZoomInSmall.nif'>

<TES4Record (LSCR) "0x305f404">
<TES4Field ('EDID') '_Frost_LoadingScreen20'>
<TES4Field ('DESC') 'Vapor Blast only deals damage if the caster is wet.'>
<TES4Field ('NNAM') '0x87d11000'>
<TES4Field ('SNAM') '0x00002040'>
<TES4Field ('RNAM') '0x0000f1ff0000'>
<TES4Field ('ONAM') '0x4cffb4'>
<TES4Field ('XNAM') '0x00005fc100000000000070c100'>
<TES4Field ('MOD2') 'Cameras\\LSCameraPanZoomInSmall.nif'>

Listing 5.2: Sample TES4 Group

38

The above top-level group (TOP) defines some new loading screens in the form of records

(only two shown). Within each of the LSCR (loading screen) records, there are fields

which describe the content of the record. The most notable ones are the EDID and the

DESC fields. The EDID is a very important record as it specifies the editor id of the new

content being added. In this case the author, Chesko, has named some of the new loading

screens _Frost_LoadingScreen12 and _Frost_LoadingScreen20. The DESC field within

the context of the LSCR record defines the text to be shown on the loading screen. It

is important to note that back in the TES4 record (the header record), the SNAM field

was used to provide a description. However, in this instance the DESC field is used for

a description and the SNAM field has a completely different meaning. This is because

records can use the same fields as another record but have different meanings for the

data within those fields, adding to the complexity. Therefore, fields cannot be correctly

interpreted without knowing the context in which they are being used. The header in

combination with multiple groups is what makes up the full content of the TES4 file.

The following is a snippet of code using these structures to extract the explicitly

defined masters of the previously mentioned Frostfall mod from the header record:

39

import os
import modage

gets the appropriate plugin class for the given file, in this case TES4
plugin = modage.plugin.get_plugin('~/Downloads/Frostfall.esp')
print((

os.path.basename(plugin.filepath), tuple(
_.content.decode('ascii')[:-1]
for _ in plugin.header.fields
if _.name == b'MAST'

),
))

Listing 5.3: Display Explicit Masters

This results in the following being printed:

(’Frostfall.esp’, (’Skyrim.esm’, ’Update.esm’, ’Campfire.esm’))

Methods similar to this are useful for extracting information from the TES files in order

to determine relationships between mods.

5.1.2 BSA (Bethesda Archive) File Format

The TES4 file only dictates logic for the Bethesda engine. In order to add assets and new

content, the mod has to provide its assets in either loose file or archived form. One of

the most common archive formats is the BSA archive. This archive starts with a header

using the following structure:

40

Table 5.4: BSA Header Structure

BSA Header
Name Type Description

bsa ubyte[4] BSA header magic, always BSA
version ulong BSA archive version
offset ulong The offset of the header’s end
primary flags ulong Bit flags, unkown meanings
folder count ulong Count of folders in the archive
file count ulong Count of files in the archive
folder names length ulong Max length of folder names
file names length ulong Max length of file names
secondary flags ulong Bit flags, unknown meanings

The Frostfall mod shown in section 5.1.1 also provides a BSA archive. Below is an

example of the decoded header for the mod Frostfall.

BSAHeader(
bsa='BSA', version=104, offset=36, primary_flags=31,
folder_count=9, file_count=271,
folder_names_length=166, file_names_length=8287,
secondary_flags=511

)

Listing 5.4: Sample BSA Header

From reading this header, one can tell that this BSA clearly contains 9 folders and 271

files. Following this header is a list of folders using the following structure:

Table 5.5: BSA Folder Structure

BSA Folder
Name Type Description

hash ulonglong Path hash used for true indexing
file count ulong The number of files in the folder
offset ulong The offset the folder’s files start at

41

Shown below are the first three folder structures within Frostfall’s BSA.

BSAFolder(hash=1275205697802562668, file_count=2, offset=8467)
BSAFolder(hash=1495643880841964652, file_count=21, offset=8520)
BSAFolder(hash=1948419268744733541, file_count=96, offset=8876)

Listing 5.5: Three BSA Folder Structures

Following this list of folders is the list of files contained within those folders. These files

use a similar structure to the BSA folder:

Table 5.6: BSA File Structure

BSA File
Name Type Description

hash ulonglong Path hash used for true indexing
size ulong The size of the file in bytes
offset ulong The offset to the file’s start

Below are the first three file structures within Frostfall’s BSA.

BSAFile(
hash=5548092738682287080, size=7420, offset=12978,
path='interface/frostfall', name='frostfallskyuisplash.dds'

)
BSAFile(

hash=13293804818063717224, size=5010, offset=20398,
path='interface/frostfall', name='frostfall_splash.swf'

)
BSAFile(

hash=732761691906355377, size=35565, offset=25408,
path='textures/frostfall', name='_frost_plainglasstile01.dds'

)

Listing 5.6: Three BSA File Structures

Although they are not listed in Table 5.6, both the path and name fields can be extracted

by going though the file at a given offset and reading until a null terminator is reached.

This archive extracts to a simple folder hierarchy typically containing engine specific

assets such as Microsoft DirectDraw Surface (.dds) files. This archive is not used for

42

compression, and there is never an instance where TES files are stored within a BSA

archive.

In distribution, these files (TES, BSA, etc.) are typically laid out in an undefined

folder hierarchy and compressed with a generic archive format such as LZMA, zip, rar,

etc. One of the many issues with proper mod distribution is the lack of a structured folder

hierarchy. Without the use of a structured folder hierarchy, it becomes more complex

to automate the downloading and installing of the assets required by the mod. More

information about this issue and several others that plague current mod distribution

practices are discussed in section 6.3.

5.2 Constructing Mod Dependency Cones

As shown in 5.1.1, it is currently possible to extract certain pieces of metadata directly

from the mods and archives that are currently being distributed. However, it should

be noted that the conflict and dependency relationships that currently can be extracted

are not complete, meaning that not all of the conflicts and dependency types listed in

section 4.2 are extracted. Specifically the implicit dependencies discussed in section 4.2

are not extracted. In order to perform simple dependency solving with these mods, it

requires the ability to (at least naïvely; not completely) extract dependency and conflicts

relationships into a distribution of metadata.

43

Because the type of compression used for mod archiving and folder hierarchy is not

predictable, the extraction of metadata was not fully automated and had to be tailored

for several mods. Therefore, a subset of mods within the repository was picked to show

the effects of dependency solving on mod installation problems that may occur. First,

the metadata for the standard game Skyrim including all relevant Bethesda published

DLCs was defined as the following dictionary:

44

VANILLA_DISTRIBUTION = {
"bethesda/skyrim": {

"versions": {
"0.0.0": {

"provides": ["Skyrim.esm"],
"depends": [],
"conflicts": [],

}
}

},
"bethesda/update": {

"versions": {
"0.0.0": {

"provides": ["Update.esm"],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

},
"bethesda/dlc/hearthfire": {

"versions": {
"0.0.0": {

"provides": ["Hearthfire.esm"],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

},
"bethesda/dlc/dawnguard": {

"versions": {
"0.0.0": {

"provides": ["Dawnguard.esm"],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

},
"bethesda/dlc/dragonborn": {

"versions": {
"0.0.0": {

"provides": ["Dragonborn.esm"],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

}
}

Listing 5.7: Vanilla Distribution Metadata

45

The distribution of commonly used dynamic libraries was represented by the following:

DLL_DISTRIBUTION = {
"dll/skse": {

"versions": {
"0.0.0": {

"provides": [],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

},
"dll/enb": {

"versions": {
"0.0.0": {

"provides": [],
"depends": [("bethesda/skyrim:latest",)],
"conflicts": []

}
}

}
}

Listing 5.8: DLL Distribution Metadata

With these two defined, all base packages can be encapsulated into a single game distri-

bution dictionary. Using this structure of metadata, the encoding of user created mods

and their relationships can be automated using methods similar to the one mentioned

in section 5.1.1. A tailored list of mods was extracted and placed in another dictio-

nary called MOD_DISTRIBUTION. The combination of these three dictionaries creates the

FULL_DISTRIBUTION map. Using this FULL_DISTRIBUTION map, we can perform depen-

dency solving using the same practices as package management.

46

5.3 Dependency Solving

In order to accurately get the information for a specified version of a mod, the following

help function was created:

def get_specification(mod_reference: str) -> dict:
try:

(mod_key, version_key, *_,) = mod_reference.split(':')
except ValueError as exc:

(mod_key, version_key) = (mod_reference, 'latest')
if version_key == 'latest':

version_numbers = list(FULL_DISTRIBUTION[mod_key]['versions'].keys())
version_key = version_numbers[0]
for version in version_numbers[1:]:

version_key = semver.max_ver(version_key, version)
try:

return (
('{mod_key}:{version_key}').format(

mod_key=mod_key, version_key=version_key
),
FULL_DISTRIBUTION[mod_key]['versions'][version_key]

)
except KeyError as exc:

warnings.warn((
'version `{version_key}` not found for mod `{mod_key}`, '
'defaulting to latest'

).format(version_key=version_key, mod_key=mod_key))
return get_specification(('{mod_key}:latest').format(mod_key=mod_key))

Listing 5.9: Mod Specification Retriever

Mod references in the context of the specified metadata use the notation

<mod-author>/<mod-name>:<mod-version>. However, in some of the following exam-

ples, the <mod-author>/<mod-name> is substituted with a single uppercase letter. The

process of building the dependency cone of a specified mod was automated using the

above distribution structure along with the following function:

47

def build_install(
mod_reference: str

) -> Tuple[Dict[str, List[Tuple[str]]], List[Tuple[str, str]]]:

def list_dependencies(mod_reference: str) -> List[str]:
dependencies = [get_specification(mod_reference)[0]]
for dependency_clause in get_specification(mod_reference)[-1]['depends']:

for dependency in dependency_clause:
dependencies.extend(list_dependencies(dependency))

return dependencies

dependency_set = set(list_dependencies(mod_reference))
conflict_pairs = []
for dependency in dependency_set:

for conflict in get_specification(dependency)[-1]['conflicts']:
conflict = get_specification(conflict)[0]
if conflict in dependency_set:

conflict_pairs.append((dependency, conflict))
return (mod_reference, {

dependency: get_specification(dependency)[-1]['depends']
for dependency in dependency_set

}, conflict_pairs,)

Listing 5.10: Building Installation Information

From the returned mod_reference, dependency_map, and conflict_pairs triple, the

values are given to the following function which builds a conjunctive normal form expres-

sion for the installability of mod_reference within the dependency cone of mod_reference.

As shown in Definition 3.1.13, if a package p is installable with respect to the repository

(∆R(p), D,C) then the package is installable with respect to the repositoryR = (P,D,C).

The optional default list allows the user to specify additional mods that are already

installed and should not be uninstalled in order to make a valid solution.

48

def build_cnf(
mod_reference: str,
dependency_map: Dict[str, List[Tuple[str]]],
conflict_pairs: List[Tuple[str, str]],
default: List[str]=[]

) -> Tuple[Dict[str, int], Dict[int, str], List[List[int]]]:
cnf_instance = []
reference_map = {

mod_reference: (idx + 1)
for (idx, mod_reference) in enumerate(dependency_map.keys())

}
install_root = reference_map[get_specification(mod_reference)[0]]
cnf_instance.append([install_root])
for (mod_reference, dependency_list) in dependency_map.items():

for dependency_set in dependency_list:
dependency_clause = [

-reference_map[mod_reference], *[
reference_map[get_specification(dependency_reference)[0]]
for dependency_reference in dependency_set

]
]
if dependency_clause not in cnf_instance:

cnf_instance.append(dependency_clause)
for (conflict_reference1, conflict_reference2) in conflict_pairs:

cnf_instance.append([
-reference_map[conflict_reference1],
-reference_map[conflict_reference2]

])
for default_plugin in default:

(mod_name, mod_specification,) = get_specification(default_plugin)
if mod_name in reference_map:

cnf_instance.append([reference_map[mod_name]])
inverted_map = {v: k for (k, v) in reference_map.items()}
return (reference_map, inverted_map, cnf_instance,)

Listing 5.11: Building CNF Formula

Because of how the premade SAT solver works, it is required to reference the mod

and its dependencies as a list of positive integers. The returned reference_map and

inverted_map are helpful for mapping between the mod reference and their assigned

integers. The cnf_instance is the actual list of boolean clauses (represented as nested

lists) that represents the satisfiability problem.

49

Utilizing a premade SAT solver, PicoSAT2, it is possible to solve the generated cnf_instance

using the following function:

def solve_install(
mod_reference: str,
dependency_map: Dict[str, List[Tuple[str]]],
conflict_pairs: List[Tuple[str, str]],
default: List[str]=[]

) -> List[Dict[str, bool]]:
(reference_map, inverted_map, cnf_instance) = \

build_cnf(
mod_reference, dependency_map, conflict_pairs,
default=default

)
inverted_map = {v: k for (k, v) in reference_map.items()}
solutions = []
for solution in pycosat.itersolve(cnf_instance):

solutions.append({
inverted_map[abs(idx)]: (idx > 0)
for idx in solution

})
return solutions

Listing 5.12: Call SAT Solver

This function calls build_cnf itself, so a quick one-liner to solve an installation problem

may look like the following:

solution = list(solve_install(*build_install('my-author/my-mod:latest')))

Proper load order was determined by using the following function when passed the output

of the build_install function:

2http://fmv.jku.at/picosat/

http://fmv.jku.at/picosat/
http://fmv.jku.at/picosat/

50

def build_load_order(
mod_reference: str,
dependency_map: Dict[str, List[Tuple[str]]],
conflict_pairs: List[Tuple[str, str]]

) -> List[str]:
load_order = [mod_reference]

def walk_dependencies(mod_reference: str):
for dependency_clause in dependency_map[mod_reference]:

for dependency in dependency_clause:
dependency = get_specification(dependency)[0]
if dependency in load_order:

load_order.remove(dependency)
load_order.append(dependency)
walk_dependencies(dependency)

return load_order

return list(reversed(walk_dependencies(mod_reference)))

Listing 5.13: Load Ordering

A simple stdout display function was also added in order to give the user an easier time

understanding the output of the solution.

def display_solutions(mod_reference: str, default: List[str]=[]) -> None:
reference = get_specification(mod_reference)[0]
install = build_install(get_specification(mod_reference)[0])
load_order = build_load_order(*install)
solutions = list(solve_install(*install, default=default))
if len(solutions) > 0:

max_reference = max(len(reference) for reference in install[1].keys())
for solution in solutions:

print(('{0} \033[0;1mSOLUTION\033[0;0m {0}').format('-' * 20))
mod_index = 0
for mod in load_order:

if mod in solution.keys() and solution[mod]:
print((

'\033[1;34m{0:#x}\033[0;0m: {1}:\033[1;34m{2}\033[0;0m'
).format(mod_index, *mod.split(':')))
mod_index += 1

Listing 5.14: Solution Display

This function, when given a reference to a mod, builds, solves, and displays the results

of the boolean satisfiability problem proposed by the FULL_DISTRIBUTION metadata.

Chapter 6 - Results

Now that the methods of solving dependencies within the context of Bethesda based

mods has been laid out, it is possible to perform testing of the solver with both synthetic

and real world examples. The following sections outline the results produced by several

valuable examples of how dependency solving can benefit mod installation.

6.1 Synthetic Examples

The following are synthetic examples of the usefulness of the dependency solver discussed

in 5.3. The simple dependency graphs are inspired from actual dependency graphs formed

by the relationships between real mods. However, these have been simplified and adapted

to better show the effectiveness of the dependency solver.

For an example of what the output of the following solutions look like, observe the

below output for the trivial solution of the installation problem for bethesda/update:latest:

skyrimupdate

Figure 6.1: Trivial Dependency Mod Graph

The dependency cone formed by this mod is just a conjunctive dependency on skyrim.

The solutions to this installation problem is shown below:

skyrim, update

51

52

The load order solution shown above is a comma separated list sorted by the mods which

should be loaded first in order to avoid conflicts (load order). As shown in figure 6.1,

because skyrim is listed as a master of update (update −→
1

skyrim), skyrim must be

loaded before update in order to avoid conflicts.

With the aid of the dependency solver functions defined in section 5.3, it is possible

to show how mod management can utilize the practices behind package management.

The following sections describe examples of mod relationships where this SAT solver

may succeed and where it may fail. For the purpose of readability, actual mod names

will be substituted with capital letters of the alphabet.

6.1.1 Successful Solving

Within this section, success is defined as properly proposing an installation solution for a

given mod that both installs without file or asset conflicts and does not cause the game to

crash. Again, because this solver is only accounting for explicitly declared dependencies

and both file and asset conflicts, we do not expect every solution to be perfect. Rather,

we expect the proposed SAT problem to be solved and present a valid mod installation

solution.

53

Take for example Figure 6.2 which only contains dependencies.

A B

C

D

E

F

Figure 6.2: Simple Solvable Mod Dependency Graph

This graph is trivial to solve since in this case it is possible to simply install all

dependencies alongside each other without conflicts occurring. Asking for the installation

solutions of mod A using the display_solutions function returns 4 separate solutions.

Table 6.1: Load Order Solutions for Figure 6.2

F, D, E, B, A
F, D, B, A
F, D, E, C, B, A
F, D, E, C, A

As shown in the Table 6.1, the solver has found every installation set that is

possible with the given dependency graph in Figure 6.2. Adding a conflict between two

packages will cause the number of resulting installation sets to decrease. For example,

observe the similar but slightly modified graph below:

Because there is now a conflict between B and D, no installation set where B and D

coexist should be possible. Also, because the dependency from A to D is conjunctive,

the installation of B should not be possible (due to the previous stated conflict). The

following solutions is the result of giving this tree to the installation solver:

54

A B

C

D

E

F

Figure 6.3: Simple Solvable Mod Dependency Graph with Conflicts

F, D, E, C, A

The results returned from the solver show that the only valid installation set in

this dependency tree is the solution where B is simply not installed. Another example is

shown where the conflict between B and D is removed and instead a conflict between C

and F is defined.

A B

C

D

E

F

Figure 6.4: Simple Solvable Mod Dependency Graph with Conflicts

Because C now conflicts with a conjunctive dependency of A (F), the installation

of C should never occur in a valid solution. The given solutions to this dependency tree

are the following:

Table 6.3: Load Order Solutions for Figure 6.4

F, D, E, B, A
F, D, B, A

55

As shown in the solutions, two installation sets exist; one where only the depen-

dency C is not installed, and one where the dependency along with its child (E) is not

installed.

6.1.2 Solving Failures

For an example where the dependency solver should not find any valid solutions, consider

the following dependency graph:

A B

C

D

E

F

Figure 6.5: Simple Unsolvable Mod Dependency Graph

It is clear to see that this simple tree is not solvable. Because C conflicts with F and

F is the conjunctive dependency of A, it is impossible to solve for A via the C subtree.

And because B also conflicts with A’s conjunctive dependency on D, it is impossible to

solve via the B subtree. Therefore, the graph is not solvable. This can be confirmed by

calling the display_solutions method and seeing that it produces no solutions.

6.2 Real World Application

It has been shown that the solver works on simple synthetic examples of installation prob-

lems within the MOD_DISTRIBUTION subset of mods. This section will display some tests

56

using the installation solver shown in section 5.3 on the dependency cone produced by ac-

tual mods. The plugins installed by default are defined within the VANILLA_DISTRIBUITON

and the DLL_DISTRIBUTION as shown in Figure 6.6.

Skyrim

Hearthfire
Dawnguard

Dragonborn

SKSE ENB

Update

Figure 6.6: Default Distribution Dependency Graph

A good representation of a mod installation problem is represented by the graph

shown in figure 6.7. Mod names have been generalized and dependencies can be either

explicitly defined masters, or implicitly defined masters (via the author written doc-

umentation of the mod). The following graph describes the dependency and conflict

relationships of the mod npc-improvements (most of the dependency relationships to

Skyrim have been omitted as all mods depend on Skyrim).

After encoding these mod and their relationships into metadata entries within the

MOD_DISTRIBUTION structure, the solution to installing npc-improvements produces the

solutions found in table 6.5:

57

Skyrim

Hearthfire
Dawnguard

Dragonborn

SKSE ENB

Update

npc-improvments

vivid-emotions

better-pathfinding

hair-compendium

complete-hair

hair-frames

eyebrow-meshes

Figure 6.7: NPC Improvement Dependency Graph

Table 6.5: Load Order Solutions for Figure 6.7

1. skyrim

2. dawnguard

3. dragonborn

4. hair-frames

5. hearthfire

6. update

7. complete-hair

8. skse

9. better-pathfinding

10. vivid-emotions

11. npc-improvements

1. skyrim

2. dawnguard

3. dragonborn

4. hearthfire

5. update

6. hair-compendium

7. skse

8. better-pathfinding

9. vivid-emotions

10. npc-improvements

58

The load order solutions in Table 6.5 are shown slightly different to the solutions in

previous tables due to longer mod names. Each column in the table lists an installation

solution sorted by the required load order.

Note that these solutions are obtained by also providing the list of default mods

as shown in Figure 6.6. However, the SAT expression is only taking into consideration

∆R(npc-improvements). For this reason, ENB is never shown as installed in any solution.

It is easy to see in Figure 6.7 that since vivid-emotions is a direct conjunctive depen-

dency of npc-improvements, and that eyebrow-meshes conflicts with vivid-emotions,

eyebrow-meshes can never be installed in a valid installation of npc-improvements.

From the solutions returned from the solver, it is obvious that the two solutions come

mainly from the disjunctive direct dependency from npc-improvements to complete-hair

or hair-compendium. Both of these solutions are valid and function correctly after in-

stallation alongside the game.

6.3 Related Issues

The issues with current Bethesda-based mod distributions and some suggested solutions

are detailed in the following sections.

59

6.3.1 Beneficial Metadata

Many of the issues surrounding mod management could be solved using proper author

specified metadata. This mainly includes using some of the default metadata fields

utilized in Debian package management (as shown in section 2.5.1). The following is

a list of suggested metadata fields that if specified by the mod author, would make

dependency solving and efficient mod distribution much easier. The fields with bold

names should be required while others are optional.

• Mod Name: The name of the mod

• Mod Author: The author of the mod (mods are uniquely referenced by

<mod-author>/<mod-name>)

• Mod Version: The structure version number of the mod (see 6.3.2)

• Dependencies: A list of dependency clauses (conjunctive and disjunctive which

start the mod’s dependency cone)

• Conflicts: A list of known conflicts

• Provides: A list of provided resources (similar to virtual packages)

• Suggests: A list of other mods that work well with the mod

60

Mods need to explicitly define their implicit dependencies at the very least for proper

dependency solving. This is a simple but incredibly beneficial change that needs to

be made for proper mod management practices. Current mod distributions have very

little useful mod information tied to the mod itself. Because of this, most of the tasks

for dependency solving must be done by hand. By implementing and enforcing basic

metadata, most of the valuable features that are a part of traditional package management

can also be designed and included in mod management.

6.3.2 Comparable Versioning

Another large problem that should be addressed when building a better mod distribution,

is determining correct versions of mods. Current mod distributions do not have a well

defined or enforced standard of version numbering and no accurate way of obtaining

specific versions of mods. Therefore, if at any point a mod requires a specific version

of another mod, there is no good way of correctly determining if the other mod is the

required version. By simply enforcing each release of a mod to specify a new (greater)

version number by utilizing either semver1 or something similar, specific versions of mods

could be accurately referenced by the combination of the mod’s name along with a

specified version number.
1http://semver.org

http://semver.org
http://semver.org

61

6.3.3 Automated Conflict Detection

Another incredibly beneficial but fairly complex feature would be the ability for a dis-

tribution of mods to routinely check for conflicts and populate metadata based on the

results. The complexity of this comes from the various levels of conflicts that exist as

mentioned in section 4.2.1. If a conflict is between two mods is automatically discovered,

that information could be uesd to indicate what types of mods to prioritize checking for

conflicts.

Chapter 7 - Conclusion and Future Work

In conclusion, the realm of package management will continue to evolve and sprout new

complexities as more and more systems find it necessary or beneficial for the distribution

and installation of user added functionality to be automated. The ability to easily install

user written extensions to a particular environment encourages continual development

and usage of that environment which benefits the entire community. Whether these sys-

tems require the distribution of simple or complex levels of components, most likely each

and every system will need to build a solution for their specific environment. The main

issues of package management still remain to be efficient dependency solving and proper

package distribution. With the addition of more optimized solvers or better constructed

distribution systems, the practice of automating the installation of component-based

software will continue to grow.

The application of the practices discussed in this thesis regarding mod manage-

ment is needed as more game publishers allow their games to be extended by their players.

With the release of Fallout 4 and the re-release of Skyrim, Bethesda has provided an en-

vironment for modding its games not only on PCs but also on consoles. Because mods

have now become a bigger part of a company’s profits, mod management and the soft-

ware described in this thesis needs to be standardized so that the practice of modding

does not become as disorganized and unstructured as current mod distributions.

62

Bibliography

[1] “EDOS Project description,” http://www.mancoosi.org/edos/, 2016, accessed:
2016-10-11.

[2] “Mancoosi Project description,” http://www.mancoosi.org/, 2016, accessed: 2016-
10-11.

[3] J. Boender, “A Formal Study of Free Software distributions,” Ph.D. dissertation,
Université Paris-Diderot - Paris VII, 2011. [Online]. Available: https://hal.
archives-ouvertes.fr/tel-00698622/

[4] F. Mancinelli, J. Boender, R. Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen, “Managing the Complexity of Large Free and Open
Source Package-Based Software Distributions,” in 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06). IEEE, 2006, pp.
199–208. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4019575

[5] P. Abate, R. Di Cosmo, C. Org Inria, R. Treinen, and S. Zacchiroli, “MPM: A
Modular Package Manager,” in CBSE ’11 Proceedings of the 14th international
ACM Sigsoft symposium on Component based software engineering. ACM, 2011,
pp. 179–188. [Online]. Available: https://dl.acm.org/citation.cfm?id=2000255

[6] P. Trezentos, R. Dicosmo, S. Ere, M. Morgado, J. Abecasis, F. Mancinelli,
and A. Oliveira, “New Generation of Linux Meta-installers,” 2008. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.2105&
rep=rep1&type=pdf

[7] R. Di Cosmo, “EDOS deliverable WP2-D2.1: Report on Formal Management
of Software Dependencies,” EDOS Project, Tech. Rep., 2008. [Online]. Available:
https://hal.inria.fr/hal-00697463

63

http://www.mancoosi.org/edos/
http://www.mancoosi.org/
https://hal.archives-ouvertes.fr/tel-00698622/
https://hal.archives-ouvertes.fr/tel-00698622/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4019575
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4019575
https://dl.acm.org/citation.cfm?id=2000255
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.2105&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.175.2105&rep=rep1&type=pdf
https://hal.inria.fr/hal-00697463

64

[8] D. Spinellis, “Package Management Systems,” IEEE Software, vol. 29, no. 2,
pp. 84–86, 3 2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6155145

[9] P. Trezentos, I. Lynce, and A. L. Oliveira, “Apt-pbo: Solving the Software
Dependency Problem using Pseudo-Boolean Optimization,” in IEEE/ACM
International Conference on Automated Software Engineering (ASE’10), 2010, pp.
427–436. [Online]. Available: http://dl.acm.org/citation.cfm?id=1859087

[10] P. Abate, S. Cousin, O. Lhomme, C. Michel, J. C. Régin, and M. Rueher,
“Deliverable D5.1 Description of the CUDF Format,” Mancoosi Project, Tech.
Rep., 2013. [Online]. Available: https://arxiv.org/pdf/0811.3621v1.pdf

[11] R. Di Cosmo, “EDOS deliverable WP2-D2.2: Report on Formal Management
of Software Dependencies,” EDOS Project, Tech. Rep., 2006. [Online]. Available:
https://hal.inria.fr/hal-00697468

[12] M. Claes, T. Mens, and R. Di Cosmo, “A historical analysis of Debian
package incompatibilities,” in IEEE International Working Conference on Mining
Software Repositories, vol. 2015-Augus, 2015, pp. 212–223. [Online]. Available:
http://www.dicosmo.org/Articles/2015-MSR-coinstevol.pdf

[13] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed.
Addison-Wesley Professional, 2002. [Online]. Available: http://a.co/fE2Z2ls

[14] P. Abate, A. Guerreiro, Stéphane Laurière, R. Treinen, and S. Zacchiroli, “Manccosi
Deliverable D5.2: Extension of an existing package manager to produce traces of
ugradeability problems in CUDF format,” 2010.

[15] P. Abate, J. Boender, R. Di Cosmo, and S. Zacchiroli, “Strong Dependencies
between Software Components,” in Proceedings of 3rd International Symposium
on Empirical Software Engineering and Measurement (ESEM’09), 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1671258

[16] T. Lengauer and R. E. Tarjan, “A Fast Algorithm for Finding Dominators in a
Flowgraph,” ACM Transactions on Programming Languages and Systems, vol. 1,
no. 1, pp. 121–141, 1979.

[17] A. Cicchetti, D. Di Ruscio, P. Pelliccione, A. Pierantonio, and S. Zacchiroli,
“A Model Driven Approach to Upgrade Package-Based Software Systems,” CCIS,
vol. 69, pp. 262–276, 2010. [Online]. Available: http://www.mancoosi.org/papers/
ccis10.pdf

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6155145
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6155145
http://dl.acm.org/citation.cfm?id=1859087
https://arxiv.org/pdf/0811.3621v1.pdf
https://hal.inria.fr/hal-00697468
http://www.dicosmo.org/Articles/2015-MSR-coinstevol.pdf
http://a.co/fE2Z2ls
http://dl.acm.org/citation.cfm?id=1671258
http://www.mancoosi.org/papers/ccis10.pdf
http://www.mancoosi.org/papers/ccis10.pdf

65

[18] M. Vieira and D. Richardson, “Analyzing dependencies in large component-based
systems,” in Proceedings 17th IEEE International Conference on Automated
Software Engineering,. IEEE Comput. Soc, 2002, pp. 241–244. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1115020

[19] D. B. Tucker and S. Krishnamurthi, “Applying Module System Research to
Package Management,” Tenth International Workshop on Software Configuration
Management (SCM-10), p. 10, 2002. [Online]. Available: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.125.6917

[20] J. A. Stafford and A. L. Wolf, “Architecture-level dependence analysis in support of
software maintenance,” in Proceedings of the third international workshop on Software
architecture - ISAW ’98. New York, New York, USA: ACM Press, 1998, pp. 129–132.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=288408.288441

[21] J. Marques-Silva, J. Argelich, A. Graça, and I. Lynce, “Boolean Lexicographic Op-
timization,” in International RCRA Workshop. Bologna: RCRA, 2010, pp. 1–15.

[22] ——, “Boolean lexicographic optimization: algorithms and applications,” Annals
of Mathematics and Artificial Intelligence, vol. 62, no. 3-4, pp. 317–343, 7 2011.
[Online]. Available: http://link.springer.com/10.1007/s10472-011-9233-2

[23] J. Vouillon and R. Di Cosmo, “Broken Sets in Software Repository Evolution,”
ICSE, pp. 412–421, 2013. [Online]. Available: http://www.dicosmo.org/Articles/
2013-DiCosmoVouillon-Icse.pdf

[24] P. Trezentos, “Comparison of PBO solvers in a dependency solving domain,” vol. 29,
pp. 23–3110, 2010.

[25] A. Barth, A. Di Carlo, R. Hertzog, L. Nussbaum, C. Schwarz, and
I. Jackson, “Debian Developers Reference,” 2016. [Online]. Available: https:
//www.debian.org/doc/manuals/developers-reference

[26] D. Le Berre and P. Rapicault, “Dependency management for the eclipse ecosystem,”
in Proceedings of the 1st international workshop on Open component ecosystems
- IWOCE ’09. New York, New York, USA: ACM Press, 2009, p. 21. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1595800.1595805

[27] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Dependency Solving: a
Separate Concern in Component Evolution Management,” 2012.

[28] J. Vouillon, M. Dogguy, and R. Di Cosmo, “Easing Software Component Repository
Evolution,” in ICSE’14. Hyderabad, India: ICSE, 2014. [Online]. Available:
http://www.dicosmo.org/Articles/2014-DiCosmoMehdiVouillon-ICSE.pdf

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1115020
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.6917
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.6917
http://portal.acm.org/citation.cfm?doid=288408.288441
http://link.springer.com/10.1007/s10472-011-9233-2
http://www.dicosmo.org/Articles/2013-DiCosmoVouillon-Icse.pdf
http://www.dicosmo.org/Articles/2013-DiCosmoVouillon-Icse.pdf
https://www.debian.org/doc/manuals/developers-reference
https://www.debian.org/doc/manuals/developers-reference
http://portal.acm.org/citation.cfm?doid=1595800.1595805
http://www.dicosmo.org/Articles/2014-DiCosmoMehdiVouillon-ICSE.pdf

66

[29] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli, “Learning from the
future of component repositories,” Science of Computer Programming, vol. 90, no.
PART B, pp. 93–115, 2014. [Online]. Available: http://www.dicosmo.org/Articles/
2014-DiCosmoAbateTreinenZacchiroli-SCP.pdf

[30] J. Yu, W. Zhang, X. Tang, S. Li, Q. Li, and Q. Shen, “Measurement on a Peer-to-
Peer Package Management System for Linux Distributions,” 2014.

[31] P. Abate, R. Di Cosmo, L. Gesbert, F. Le Fessant, R. Treinen, and S. Zacchiroli,
“Mining Component Repositories for Installability Issues,” 2013.

[32] D. Le Berre and A. Parrain, “On SAT Technologies for dependency management
and beyond,” pp. 197–200, 2008. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-00870846/

[33] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner, “OPIUM: Optimal Package
Install/Uninstall Manager,” 29th International Conference on Software Engineering
(ICSE’07), pp. 178–188, 2007. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=4222580

[34] J. Mugler, T. Naughton, and S. Scott, “OSCAR Meta-Package System,”
in 19th International Symposium on High Performance Computing Systems
and Applications (HPCS’05). IEEE, 2010, pp. 353–360. [Online]. Available:
http://ieeexplore.ieee.org/document/1430094/

[35] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman, “Package Management Security,”
2009.

[36] F. Festi, “Package management system,” 2010. [Online]. Available: https:
//www.google.com/patents/US8707293

[37] A. Athalye, R. Hristov, T. Nguyen, and Q. Nguyen, “Package Manager Security,”
2014.

[38] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Package upgrades in FOSS
distributions,” in Proceedings of the 1st International Workshop on Hot Topics in
Software Upgrades - HotSWUp ’08. New York, New York, USA: ACM Press, 2008,
p. 1. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1490283.1490292

[39] V. Manquinho and J. Marques-silva, “PackUp : Tools for Package Upgradability
Solving system description,” Journal on Satisfiability, Boolean Modeling and Com-
putation, vol. 8, pp. 89–94, 2012.

http://www.dicosmo.org/Articles/2014-DiCosmoAbateTreinenZacchiroli-SCP.pdf
http://www.dicosmo.org/Articles/2014-DiCosmoAbateTreinenZacchiroli-SCP.pdf
https://hal.archives-ouvertes.fr/hal-00870846/
https://hal.archives-ouvertes.fr/hal-00870846/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4222580
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4222580
http://ieeexplore.ieee.org/document/1430094/
https://www.google.com/patents/US8707293
https://www.google.com/patents/US8707293
http://portal.acm.org/citation.cfm?doid=1490283.1490292

67

[40] Wikipedia, “Separation of Concerns,” 2016. [Online]. Available: https://en.
wikipedia.org/wiki/Separation_of_concerns

[41] J. A. Forbes, J. D. Stone, S. Parthasarathy, M. J. Toutonghi, and
M. V. Sliger, “Software package management,” 1998. [Online]. Available:
https://www.google.com/patents/US6381742

[42] J. Argelich, D. L. Berre, I. Lynce, J. Marques-Silva, and P. Rapicault, “Solving
Linux Upgradeability Problems Using Boolean Optimization,” in In Proceedings
LoCoCo, 7 2010, pp. 11–22. [Online]. Available: http://arxiv.org/abs/1007.1021

[43] A. Ignatiev, M. Janota, and J. Marques-Silva, “Towards efficient optimization in
package management systems,” in Proceedings of the 36th International Conference
on Software Engineering - ICSE 2014. New York, New York, USA: ACM
Press, 2014, pp. 745–755. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2568225.2568306

[44] R. Treinen and S. Zacchiroli, “Upgrade description formats: generalities and DUDF
submission format,” 2009. [Online]. Available: http://www.mancoosi.org/reports/
tr1.pdf

[45] h. Shaull, “What’s an example of an unsatisfiable 3-CNF formula?” 2014. [Online].
Available: http://cs.stackexchange.com/q/20118

https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.google.com/patents/US6381742
http://arxiv.org/abs/1007.1021
http://dl.acm.org/citation.cfm?doid=2568225.2568306
http://dl.acm.org/citation.cfm?doid=2568225.2568306
http://www.mancoosi.org/reports/tr1.pdf
http://www.mancoosi.org/reports/tr1.pdf
http://cs.stackexchange.com/q/20118

Vita

Stephen Bunn was born to Eddie and Cyndy Bunn in 1995 in the state of North

Carolina, United States of America. Homeschooled up until college, he was accepted

by Appalachian State University in 2013 where he earned his Bachelor of Science in

Computer Science in the spring of 2016. He then pursued a Master of Science in Computer

Science using the 4+1 plan in order to graduate in 2017.

68

	Abstract
	Acknowledgements
	Introduction
	What is Package Management?
	Software Components
	Levels of Component Management
	What is a Package?
	Relationships between Packages
	Debian Package Management
	Metadata
	Archive
	Virtual Packages

	Installers
	Meta Installers
	Physical Installers

	Package Theory
	Definitions
	Repository
	Abundance
	Peace
	Health
	Installability
	Co-Installability
	Direct Dependency
	Dependency
	Conjunctive Direct Dependency
	Conjunctive Dependency
	Dependency Cone
	Reverse Dependency Cone
	Installability by Dependency Cone

	Package Installability

	Video Game Modifications
	Installing Mods
	Installability Analysis
	Mod Conflicts
	Mod Dependencies

	Applied Mod Management
	Mod Structure
	TES (The Elder Scrolls) File Format
	BSA (Bethesda Archive) File Format

	Constructing Mod Dependency Cones
	Dependency Solving

	Results
	Synthetic Examples
	Successful Solving
	Solving Failures

	Real World Application
	Related Issues
	Beneficial Metadata
	Comparable Versioning
	Automated Conflict Detection

	Conclusion and Future Work
	Bibliography
	Vita

